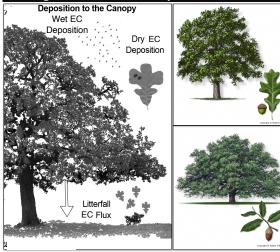


Atmospheric Elemental Carbon (EC): Deposition to Oak Trees and Litterfall Flux to Soil in an Urban Area


Jenna E. Rindy¹, Alexandra G. Ponette-González¹, Tate E. Barrett¹, Brett W. Luce¹, Rebecca J. Sheesley², Kathleen C. Weathers³ ¹Department of Geography and the Environment, University of North Texas; ²Department of Environmental Science, Baylor University; ³Cary Institute of Ecosystem Studies

Introduction

- Elemental carbon (EC) is a component of fine particulate matter (PM_{2.5}) that contributes to climate warming and poor air quality^[1].
- In urban areas, diesel engines are a major source of EC to the atmosphere^[1].
- At the surface, urban tree canopies have been found to be an important sink for PM_{2.5} ^{[2][3][4]}, but the role of urban trees in removing EC remains unexplored.
- Here, we build on this work by quantifying 1) the magnitude of EC retention in leaf waxes (in-wax EC) and 2) EC fluxes to soil via leaf litterfall under two oak species in a rapidly growing urban area in the Dallas-Fort Worth (DFW) Metroplex.

Background and Focal Species

Left: EC deposition to leaf surfaces occurs via wet and dry deposition. Some fraction of this EC can become embedded in leaf waxes and fall directly to the ground via leaf litterfall.

Right: a) *Quercus stellata* (post oak) is a deciduous tree native to North Texas. **b)** *Quercus virginiana* (live oak) is a non-native evergreen tree that is widely planted in residential yards and urban greenspaces.

City of Denton, Dallas-Fort Worth Metroplex

Left: Litterfall samplers in Denton, Texas. Litterfall was collected under 20 post and 15 live oak trees every other week (Apr-Jul). Litterfall was sorted, dried and weighed.

Left: Foliar

samples

collected

monthly

(Apr-Jul)

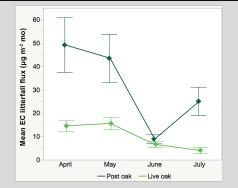
live oak

trees

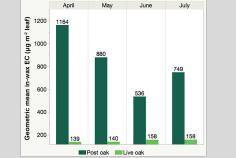
from 10 pairs

of co-located

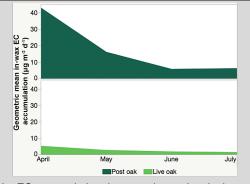
post oak and


were

Foliar Sampling and EC Extraction


Right: Leaves were extracted with chloroform to remove EC from leaf waxes. Extracts were filtered onto quartzfiber filters and analyzed on a Sunset OC/EC Analyzer.

Litterfall EC Flux


 Post oaks delivered 1.5-3.5 times more EC to the ground via leaf litterfall than live oaks.

EC Retention in Leaf Waxes

- Post oak leaves retained 3-8 times more EC in their waxes than live oaks.
- Post oaks had slightly lower LAI (2.4 ± 0.20) than live oaks (3.4 ± 0.24). Thus, at the canopy scale, post oak trees retained more EC than live oak trees.

Net EC Accumulation

• Net EC accumulation decreased over time in the leaves of both species.

Acknowledgments & References

- ¹ Bond et. al (2013). Bounding the role of black carbon in the climate system: A scientific assessment. *Journal of Geophysical Research 118*:5380-5552.
- ² Grantz, D.A., Garner, J.H.B., & Johnson, D.W. (2003). Ecological effects of particulate matter. *Environment International 29*: 213-239.
- ³ Dzierzanowski, K., Popek, R., Gawronska, H., Saebo, A., & Gawronski, S. (2011). Deposition of Particulate Matter of Different Size Fractions on Leaf Surfaces and in Waxes of Urban Forest Species. *International Journal of Phytogenediation* 13: 1037-1046.
- ⁴ Hara, H., Kashiwakura, T., Kitayama, K., Bellingrath-Kimura, S. D., Yoshida, T., Takayanagi, M., Yamagata, S., Murao, N., Okouchi, H., & Ogata, H. (2014). *Atmospheric Environment* 97: 511-518

This research is funded by the National Science Foundation (to AGP, CAREER #1552410).